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SUMMARY 

A Galerkin finite element method and two finite difference techniques of the control volume variety have 
been used to study magnetohydrodynamic channel flows as a function of the Reynolds number, interaction 
parameter, electrode length and wall conductivity. The finite element and finite difference formulations use 
unequally spaced grids to accurately resolve the flow field near the channel wall and electrode edges where 
steep flow gradients are expected. It is shown that the axial velocity profiles are distorted into M-shapes by 
the applied electromagnetic field and that the distortion increases as the Reynolds number, interaction 
parameter and electrode length are increased. It is also shown that the finite element method predicts larger 
electromagnetic pinch effects at the electrode entrance and exit and larger pressure rises along the electrodes 
than the primitive-variable and streamfunction-vorticity finite difference formulations. However, the 
primitive-variable formulation predicts steeper axial velocity gradients at the channel walls and lower axial 
velocities at the channel centreline than the streamfunction-vorticity finite difference and the finite element 
methods. The differences between the results of the finite difference and finite element methods are attributed 
to the different grids used in the calculations and to the methods used to evaluate the pressure field. In 
particular, the computation of the velocity field from the streamfunction-vorticity formulation introduces 
computational noise, which is somewhat smoothed out when the pressure field is calculated by integrating 
the Navier-Stokes equations. It is also shown that the wall electric potential increases as the wall 
conductivity increases and that, at sufficiently high interaction parameters, recirculation zones may be 
created at the channel centreline, whereas the flow near the wall may show jet-like characteristics. 
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INTRODUCTION 

The objective of this paper is twofold. First, an analysis of magnetohydrodynamic (MHD) channel 
flows, which have practical applications as direct current (DC) electromagnetic pumps for liquid 
metal fast breeder reactors and in lithium blankets of conceptual fusion reactors, is presented. The 
analysis involves the determination of both the electric and hydrodynamic fields in the channel as 
a function of the Reynolds number, interaction parameter, electrode length and wall conductivity. 

The second objective of the paper is to present a detailed comparison of the electric and 
hydrodynamic fields calculated by means of three numerical techniques: a primitive-variable finite 
element formulation, a streamfunction-vorticity finite difference method and a primitive-variable 
finite difference scheme of the control volume variety. 
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Previous numerical calculations of MHD channel flows include those of References 1-10. Wu' 
studied unsteady, fully developed MHD flows by means of a finite element method. Singh and 
La12*3 analysed fully developed MHD flows and determined the effects of the applied magnetic 
field orientation and wall conductivity on both the electric and hydrodynamic fields. Gel'fgat et 
d4 used a streamfunction-vorticity finite difference formulation to analyse MHD channel flows 
with non-uniform magnetic fields and non-conducting walls at low Reynolds and Hartmann 
numbers. 

Yagawa and Masuda' used an incremental finite element technique to study MHD channel 
flows at high magnetic Reynolds numbers in which the induced magnetic field cannot be 
neglected. They also analysed a lithium blanket at high interaction parameter and neglected the 
convection and viscous terms in the momentum (Navier-Stokes) equations, i.e. the Lorentz body 
force was balanced by the pressure gradient. 

Most of these studies employed an applied magnetic field parallel to the flow and neglected the 
inertia (or convection) terms in the fluid equations. By way of contrast, the formulation and results 
presented in this paper are for finite Reynolds number flows where the inertia terms cannot be 
neglected. Furthermore, this study considers MHD channel flows where the applied magnetic field 
is perpendicular to the flow direction. 

The first numerical calculations relevant to the geometry and parameters considered in this 
paper were performed by Winowich and Hughes,6 who used a primitive-variable finite element 
formulation. Their preliminary calculations for a non-conducting wall electromagnetic pump 
indicated that the non-uniform applied magnetic field produces M-shaped axial velocity profiles 
in the fluid. 

Ramos and Winowich7 used a time-dependent primitive-variable finite difference method to 
analyse an electromagnetic pump with non-conducting walls and showed that the upstream and 
downstream boundaries of the computational domain must be located sufficiently far away from 
the electrodes in order for the flow to be fully developed at those boundaries. Ramos and 
Winowich7 also showed that the locations of the upstream and downstream boundaries are 
functions of the Reynolds number and interaction parameter and that the axial velocity profiles 
are distorted into M-shapes as a consequence of the applied magnetic field. 

Winowich et d 8  used a primitive-variable finite element formulation to analyse MHD channel 
flows as a function of the electrode length and wall conductivity and showed that the channel wall 
electric potential increases as the wall conductivity increases. Winowich et aL8 also compared their 
numerical results with those of Ramos and Winowich7 for an unrealistic (non-dimensional) 
electrode length equal to unity and claimed that the differences between the results of the finite 
element and finite difference methods were due to the different meshes employed in the 
calculations. 

Winowich' used a primitive-variable finite element formulation to analyse MHD channel flows 
and determined the effects of the Reynolds number, interaction parameter, electrode length and 
wall conductivity on the electric and hydrodynamic fields. Winowich and Ramos' compared 
some of the finite element results of Winowich' with those obtained by means of a 
streamfunction-vorticity finite difference method and a primitive-variable finite difference 
technique of the control volume variety. The results of such a comparison indicated that the finite 
element method predicts a higher electromagnetic pinch effect at the electrode entrance and exit, 
and higher pressure than the primitive-variable and streamfunction-vorticity finite difference 
formulations. However, the primitive-variable finite difference formulation predicted steeper axial 
velocity gradients at the channel wall and more pronounced M-shaped axial velocity profiles than 
the streamfunction-vorticity and finite element methods. The differences between the results of the 
finite element and finite difference techniques were attributed to the different meshes used in the 
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calculations. These differences may also be related to the numerical methods used to evaluate the 
pressure field. In particular, the finite element method used bilinear and biquadratic interpolation 
functions for the pressure and velocity fields respectively, whereas donor cell/central difference 
formulae were used to calculate the spatial derivatives in the finite difference formulations. 

In addition to the numerical studies briefly discussed in previous paragraphs, numerous 
theoretical (asymptotic) analyses of MHD channel flows have appeared in the literature. Hunt' ' 
and Hunt and Stewartson'* studied MHD flows in rectangular ducts with uniform transverse 
magnetic fields and obtained asymptotic solutions for perfectly conducting walls perpendicular to 
the applied magnetic field and thin walls of arbitrary conductivity parallel to the applied magnetic 
field. Hunt and Leibovich' used asymptotic methods to study variable-area converging and 
diverging MHD channel flows at high interaction parameters and showed that the velocity 
profiles are very sensitive to the variation of the duct width with axial distance. 

MHD flows at  high Hartmann numbers and interaction parameters have been studied in 
References 14-19. At high interaction parameters the inertia terms in the Navier-Stokes equations 
are negligible compared with the electromagnetic body forces, and the flow field can be divided 
into a core region and velocity layers parallel and normal (Hartmann's layers) to the applied 
magnetic field. In the core region the convective and viscous terms are negligible and the pressure 
gradient balances the electromagnetic body forces. l 4  The velocity layers parallel to the applied 
magnetic field may be either secondary boundary layers adjacent to the walls or free shear layers. 
In the secondary layers the flow is characterized by high velocities induced by the channel 
geometry and the non-uniform magnetic field. 

and Walker and Ludford'* studied MHD flows in 
constant- and variable-area rectangular channels with all the walls either insulated or conducting, 
by means of asymptotic methods, and showed that thin, high-velocity boundary layers are formed 
in a diverging channel; these boundary layers carry almost the entire flow. Holroyd and Walker19 
considered steady MHD flows with non-uniform applied magnetic fields and wall conductivity in 
pipes of circular cross-section at high Hartmann numbers and interaction parameters, and 
showed that a pair of eddies is formed near the pipe centreline where the applied magnetic field is 
weakest. These eddies induce flow reversals with associated large pressure drops. 

In this paper a primitive-variable finite element method, a streamfunction-vorticity finite 
difference technique and a primitive-variable finite difference formulation of the control volume 
variety are used to determine the electric and hydrodynamic fields in an MHD channel flow with 
an applied magnetic field perpendicular to the flow direction, as a function of the Reynolds 
number, interaction parameter, wall conductivity and electrode length. 

The calculations presented in this paper are valid for low interaction parameters and moderate 
Reynolds numbers, and the inertia and viscous terms in the Navier-Stokes equations cannot be 
neglected. These calculations show that the axial velocity profiles develop peaks near the wall; the 
magnitude of these velocity peaks increases as the interaction parameter is increased and, for 
sufficiently large values of the interaction parameter, flow reversals may appear at the channel 
centreline in qualitative agreement with the asymptotic analyses of References 14-19. 

Hunt and Ludford," Walker et 

PROBLEM FORMULATION 

Consider the DC electromagnetic pump shown schematically in Figure 1. The pump consists of a 
duct, two electrodes and two magnetic pole pieces. 

The hydrodynamic and electromagnetic fields in Figure 1 are three-dimensional, and the 
electromagnetic pump will be idealized as the two-dimensional magnetohydrodynamic (MHD) 
channel flow shown schematically in Figure 2. We will assume that the flow is steady, 
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Figure 1 .  Schematic of a DC electromagnetic pump 
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Figure 2. Schematic of a two-dimensional MHD channel flow configuration and applied magnetic field 

incompressible, laminar, isothermal, Newtonian and electrically conducting and that the elec- 
trodes are perfect conductors, while the channel wall extensions may have finite electrical 
conductivity. 

In Figure 2, B ,  denotes the applied magnetic field, x and y are the co-ordinates along and 
transverse to the channel axis respectively, 2b is the channel width, t ,  is the wall thickness and 
L, = 2x, denotes the electrode length, i.e. - x, and x, correspond to the electrode entrance and exit 
respectively. 
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Under the assumptions stated above, the hydrodynamic flow field is governed by the equations 

au au 

ax ay -+-=o,  

where u and u are the axial and transverse velocity components respectively, p (=constant) is the 
fluid density, p is the pressure, p (=constant) is the dynamic viscosity of the fluid andf, andf, 
denote the components of the body forces per unit volume in the x- and y-direction respectively. 

Introducing the non-dimensional variables 

X* = x/b, Y * = Ylb, u* = u/u, , u* = o/u,, P* =PIP: (4) 
into equations (1H3), the following system results: 

au* au* 
~ + ~ =o, 
ax* ay* 

au* au* ap* 1 (azu* ;;) 
ax* ay* ax* Re axe2 

u * p + u * p = - - + -  __ +y +Fir;, 

ao* av* ap* 1 azo* d2u* 
ax* ay* ay* Re(ax*’ +w) u * p + u * p = - - + -  - + F?*, 

( 5 )  

(7) 

where u, is the mass-averaged velocity, Re = p bu,,,/p is the Reynolds number based on the channel 
half-width and the mass-averaged velocity, and 

F :, = f, blpu: I F?. = f ,  b/p u i .  (8) 

The body forcesf, and& in equations (2) and (3) can be determined from Maxwell’s equations, 
which can be written as 

V-D = pe,  (9) 

V*B = 0, (10) 

(1 1) 

(12) 

V x H = aD/at+ J, 

v x E = -aB/at, 

where p e  is the electric charge density, D is the electric displacement, B is the magnetic flux density, 
H i s  the magnetic field intensity, t is time, E is the electric field intensity and J is the electric current 
density. 

For a time-independent magnetic field, equation (12) states that the electric field is irrotational, 
i.e. 

where 4 is the electric potential. 
E= - V4, (13) 

Equation (1 3) can be written in non-dimensional form as 
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where 
E* =E/Bou,, 4* = 4 / b u m  Bo, 

i and j are the unit vectors in the x- and y-direction respectively and B, is a characteristic value of 
the applied magnetic field. 

The applied magnetic field B is assumed to act in the z-direction only, i.e. B=(O, 0, B J ,  and has 
constant magnitude between the electrodes; beyond the electrodes the applied magnetic field 
decays exponentially to zero, i.e. 

BAx) =Bo, 1x1 < xe, (16) 

Bz(x) = B,exPC-t(lxI-x,)/bl, 1x1 2% (17) 

where 5 (= 1) denotes the magnetic field spatial decay. The applied magnetic field shown in Figure 
2 is solenoidal but not irrotational. The violation of the irrotationality condition is the result of 
reducing the three-dimensional problem shown in Figure 1 to the two-dimensional one presented 
in Figure 2. 

Equations (16) and (17) can be written in the non-dimensional form 

B: = 1, Ix*l < x:, (18) 

B: = exp[-t(Jx*l-x:)], Ix*l > x:, (19) 
where B: = B,/B,. 

media, i.e. 
The current density J is related to E, v = (u, u) and B through Ohm’s law for isotropic moving 

J=o,(E+vxB),  (20) 

where of is the fluid electric conductivity. 
Equation (20) can be written in the non-dimensional form 

J* = R,(E* + V*  x B*), (21) 

where J* = J/(Bo/bpo), R ,  = poofu,b is the magnetic Reynolds number and p, is the permeabil- 
ity of free space. 

The body force f = (f,,f,, 0) in equations (2) and (3) is the electromagnetic Lorentz force given by 

f=JxB=o , (E+vXB)xB.  (22) 

(23) 

Equation (22) can be written in non-dimensional form as 

F* =A(J* x B*)= N( -V*C#J* +v* x B*) x B*, 

where A =Bg/popui is the Alfven number and N =afB2b/pu, is the interaction parameter. 

(6) and (7) are given by 
For the applied magnetic field shown in Figure 2, the electromagnetic body forces in equations 

FZ* = - NB:(a+*/dy*)- NB:’u*, 

F?* = NB:(a&*/ax*)-Ns:’u*. (25) 

(24) 

The electric current density vector J (or J*) is solenoidal, i.e. 

V . J = O  or V*.J*=O. (26) 

V’+=V-(vxB) or V*’q5*=V*-(v* xB*). (27) 

Therefore, using equations (14) and (21), equation (26) can be written as 
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The solution of equation (27) yields the electric potential 4*, which can be substituted into 
equation (14) to obtain the electric field intensity vector E*. Once 4* is known, the electromag- 
netic forces (see equations (24) and (25)) can be calculated and then substituted into equations 
(5H7) to determine the hydrodynamic field. Note that equations (5H7), (24), (25) and (27) are non- 
linearly coupled through the velocity vector v* =(u*,  u*) and the electric potential 4*. Note also 
that the equations (5H7) are invariant under translations in pressure. 

BOUNDARY CONDITIONS 

Equations (1H3)  and (27) are subject to the boundary conditions 

u ( - - ,  y)=u(.o,  y)=1.5u,C1 -(Y/b)21, (28) 

U ( - a , Y ) = u ( a , Y ) = O ,  (29) 

P ( - . o ,  Y ) = O ,  (30) 
u(x, b) = u(x, b)= 0 (31) 

du(x, O)/dy = 0, u ( x ,  0) = 0, (32) 

4 k  0) = 4 ( - a, Y )  = 4 (a, Y )  = 0, (33) 

4(x, b)=4e ,  1x1 G xe, (34) 
where 1.5 uo denotes the axial velocity at the channel centreline far upstream from the applied 
electric and magnetic fields, and 4, is the electrode potential. 

The boundary conditions at the wall for I x* I > x, depend on the wall electrical characteristics. 
For a non-electrically conducting wall 

d4(x, b)/dy=O, IxI>xe, (35) 
whereas for an electrically conducting wall the boundary conditions for the electric potential can 
be determined as follows. If the wall thickness t ,  is much smaller than the electrode spacing, i.e. 
t, -g b, the electric potential at the wall, tp,, will mainly be a function of the axial co-ordinate, i.e. 
4, = +,(x), and a current balance on a small segment Ax of the wall will relate the axial current 
density in the wall, J,, to the transverse current density in the fluid evaluated at the wall, i.e. 

t,(dJ,/dx)=J,(x, b), 1x1 > x,. (36) 

- tw~w(~24w/ax2)=J,(x,  b), 1x1 > x,, (37) 

4,( -a)=4, (a)=O. (38) 

Furthermore, applying Ohm’s law at the wall yields 

where bW(x) is the wall electric potential, 6, is the electrical conductivity of the wall and 

Equations (28) and (29) indicate that far upstream and far downstream of the electrodes the 
velocity profiles correspond to that of a fully developed, laminar channel flow; equation (30) fixes 
the upstream pressure (note that the incompressible Navier-Stokes equations are invariant under 
translations in pressure); equation (3 1) corresponds to the no-slip condition at the channel wall; 
equation (32) is the condition of symmetry at the channel centreline; equation (33) indicates that 
the electric potential is zero far upstream and far downstream of the electrodes and at the channel 
centreline; equation (34) corresponds to the electrode potential (note that the electrodes were 
assumed to be perfect conductors). 
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The mass-averaged velocity through the channel is uo, i.e. urn = uo, and equations (28H38) can 
be written in the non-dimensional form 

u*(- 00, y * )  =u*(oo,  y*)= 1.5(1 -y**), 

u*( - 00, y*)  = u*(co, y*)=O, 

p* ( -  00, Y*) = 0, 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

d4*(x*, l)/dy* = 0, Ix*l > L e / 2 b  (non-conducting wall), (45) 

- Rrn8d2f$;/dX*2 = J,*,(x*, I ) ,  I x * ~  > LJ2b  (conducting wall), (46) 

(47) 

u*(x*, 0) = du*(x*, O)/dy* =o, 
4*(x*, 0) = 4*(- co, y*)  = f$*( co, y*)=O, 

4 * ( ~ * ,  1) = 4; = f$e/burnBo, J x * ~ <  X: = L f / 2 = x e / b = L e / 2 b ,  

4; ( - 00) = 4; (co) = 0 (conducting wall), 

where 4;= 4,/burnBo is the non-dimensional electric potential of the wall, J* = ( J $ ,  J;,) and 5 
= o w t w / a f b  is the wall conductivity parameter, which is the ratio of the wall conductance to the 
fluid conductance. 

For the sake of convenience we will drop all the stars in the non-dimensional equations in the 
next sections, with the understanding that hereon all the variables are dimensionless. 

NUMERICAL METHODS 

Equations ( 5 H 7 ) ,  (27) and (46) for conducting walls were solved by means of a finite element 
method and two finite difference techniques subject to the boundary conditions given by 
equations (39H44), (45) for non-conducting walls and (46), (47) for conducting walls. The infinite 
domain -co < x < 00 was truncated to a finite one, and the locations of the upstream and 
downstream boundaries of the computational domain were determined so as to minimize the 
influence of their location on the computed hydrodynamic and electric fields. The length of the 
computational domain and the number of grid points and finite elements are given in the next 
subsections, where the finite element and finite difference methods used to solve equations (5)-(7), 
(27) and (46) for conducting walls are presented. 

Galerkin jinite element method 

A Galerkin finite element method was used to solve equations (5H7) ,  (27) and (46), and the flow 
domain was subdivided into rectangular elements for the fluid (Figure 3) and one-dimensional line 
elements for the conducting wall, i.e. for equation (46). The primitive variables over a given finite 
element E were approximated as 

where u,, u,, pn and 4, are the nodal amplitudes (unknowns), $,(x, y) and @,(x, y) are bilinear 
and biquadratic interpolation functions respectively and the summation symbol refers to the 
nodes of the element E .  
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Figure. 3. Schematic of the finite element grid 

A Galerkin finite element method was used to derive the discrete form of the governing 
equations for each element, which, when assembled over the computational domain, result in the 
following system of algebraic equations: 

A{X}  = { F } ,  L { 4 }  = { G I  (50ab) 

where { X }  is the vector of the velocity-pressure nodal amplitudes, A and L are global coefficient 
matrices, {+} represents the nodal amplitudes of the electric potential, { F }  denotes the assembled 
right-hand sides of the continuity and Navier-Stokes equations and { C} is the assembled right- 
hand-side vector of the fluid and wall electric potentials. 

The Newton-Raphson method was used to solve the non-linear equation (50a), and a frontal 
solver2' was used to calculate the vectors { X }  and {+}. Since the velocity-pressure equations 
(equation (50a)) and the electric potential equations (equation (50b)) are coupled through their 
right-hand-side terms (see equations (24), (25) and (27)), the solution of equations (50) was 
obtained by means of an iterative technique as follows. The electromagnetic forces were guessed 
and equation (50a) was solved to determine the nodal amplitudes of the velocity and pressure 
fields. The velocity field was then used to evaluate the vector { C} in equation (50b), whose solution 
gives the nodal amplitudes of the electric potential. The electric potential thus obtained was then 
used to solve equation (5Oa) and this iterative process was repeated until a specified convergence 
criterion was satisfied. 

The iterative technique described in the previous paragraph is such that the solutions of the 
velocity and pressure fields, and that of the electric potential, are decoupled within each iteration. 

A more efficient technique would have been to write the coupled equations for {XI and {+} as 

B{Y} = { R } ,  (51) 

where { Y } denotes the nodal amplitudes of the velocity, pressure and electric potential, B is a 
global coefficient matrix and { R }  denotes the corresponding right-hand-side vector. 

Equation (51) could be solved by means of a Newton-Raphson method with a frontal solver, 
and its solution provides the nodal amplitude vector. However, the dimensions of the matrix Bare 
much larger than those of the matrices A and L, and equation (51) was not used owing to the size of 
the computer (CDC 815) used to solve the finite element equations. 

In order to accelerate the convergence of the finite element method, an incremental technique 
based on the interaction parameter, which appears in the electromagnetic body forces (see 
equations (24) and (25)), was used. 



916 J. I. RAMOS AND N. S. WINOWICH 

A schematic of the finite element mesh is shown in Figure 3 .  This mesh is symmetric with respect 
to the y-axis, and the hydrodynamic and electric fields need to be calculated in 0 6 y < 1. 

The flow field upstream and downstream of the electrodes is not symmetric, even though the 
channel geometry, electrodes and applied magnetic field are symmetric with respect to the y-axis, 
In order to ensure that the flow field far upstream and far downstream of the electrodes 
corresponds to a fully developed laminar condition for the range of parameters analysed in this 
paper, the - 00 < x < 00 was truncated to - 220 d x d 220, where x is the non-dimensional axial 
co-ordinate. 

The finite element mesh shown in Figure 3 concentrates the finite elements near the channel wall 
and at the electrode entrance and exit where steep gradients are expected. The size of the elements 
increases from x = x, to x = 220 and from x = - x, to x = - 220. Note that the axial length of the 
computational domain is 440 whereas the non-dimensional channel half-width is unity, i.e. the 
finite elements have large aspect ratios, particularly near the upstream and downstream 
boundaries of the computational domain. 

Primitive-variable finite diference formulation 

Equations (5H7), (27) and (46) for conducting walls were also solved by means of a finite 
difference technique which uses a primitive-variable formulation. The finite difference method is of 
the control volume variety and uses a staggered grid where the scalar variables, i.e. p ,  4 and 4w, are 
stored at the grid points, whereas the velocity components u and u are stored at the midpoints in 
order to accurately calculate the convective fluxes at the computational cell boundaries. 

The number and location of the grid points used in the primitive-variable finite difference 
method were selected by trial and error in order to ensure that the electric and hydrodynamic 
fields are grid-independent, and upwind/central difference approximations were used to evaluate 
the convective fluxes at the cell boundaries. A 256 x 64 mesh resulted in grid-independent results 
for calculations performed with Re = 1000, N = 10, 5 = 0.3, L, = 1 and 4e = 1.5, and this grid was 
also used at the lower Reynolds numbers and interaction parameters discussed in the section on 
the presentation of results. 

The pressure was calculated by means of the SIMPLE algorithm” in order to satisfy the 
continuity equation, and the finite difference equations of u, u, p ,  4 and 4w were solved iteratively 
using a line Gauss-Seidel method starting at the upstream boundary and sweeping the 
computational domain axially as many times as required to obtain convergence for each 
dependent variable.22 This sweeping procedure was used for all the dependent variables until a 
specified convergence criterion was satisfied. 

The finite difference grid was concentrated at the channel wall and at the electrode entrance and 
exit where large gradients are expected. The grid was symmetric with respect to the y-axis, even 
though the hydrodynamic and electric fields are not symmetric with respect to that axis. A 
geometric progression was used to calculate the location of the grid points in the axial direction in 
O<x<xe, and an exponential function was employed to distribute the grid points axially for 
x 2 x,. The number of grid points in the electrode region as well as the geometric progression ratio 
and the exponential function were selected so as to ensure that the results are grid-independent. 

Streamfunction-vorticity finite difference formulation 

Equations (5)-(7), (27) and (46) for conducting walls were also solved in the same grid as that 
discussed in the previous section using a streamfunction-vorticity formulation. The formulation 
takes advantage of the fact that for a two-dimensional incompressible flow there exists a non- 



FINITE ELEMENT METHODS FOR MHD CHANNEL FLOWS 917 

dimensional streamfunction 5 such that 

u = a w y ,  + = - atlax, (52)  

where all the variables used in this and the next sections are dimensionless. 

with continuous derivatives up to the second order. 

written as o = (0, 0, w )  where 

Equation (52)  automatically satisfies the continuity equation (5) if 5 is a continuous function 

In a two-dimensional flow the vorticity o = V x v is in the direction of the z-axis and can be 

a+ au 
ax ay.  

a=--- 

Substitution of equation (52) into equation (53) yields 

(53) 

and taking the curl of equations (6) and (7) yields 

aw aw 1 aF, aF, 
ax ay Re ax ay u-++-=-v w + - - - .  (55 )  

Equations (27), (46), (54) and (55) were solved for 4, &, 5 and w using upwind/central differences 
for the convection terms in an iterative manner. A line Gauss-Seidel method, similar to that 
described in the previous section, was used to solve equations (54) and (55) until a specified 
convergence criterion for each dependent variable was reached. The boundary conditions for ( 
and w are 

and the vorticity at the wall was evaluated by means of a first-order accurate finite difference 
formula.23 

Equations (54) and (55) involve two dependent variables, 5 and w, and their solution is more 
computationally efficient than that of equations (5H7), which involve three dependent variables. 
However, the velocity field is obtained from the streamfunction-vorticity formulation by 
differentiation of the streamfunction; this differentiation introduces computational noise because 
5 is only calculated at discrete grid points. Furthermore, the pressure field must be determined 
from the integration of equations (6) and (7) subject to equation (41) and ap(x, O)/dy=O. Since the 
integration of equations (6) and (7) is a smoothing operation, the pressure field determined from 
the integration of equations (6) and (7) is not as ‘noisy’ as those of u and 0. 

The solution of equations (54) and (55) was obtained in the same grid as that of the primitive- 
variable finite difference formulation described in the previous section using a staggered grid. 
Furthermore, the term awlat was added to the left-hand side of equation (55) in order to increase 
the diagonal terms of the discretized form of equation (55) and accelerate the convergence rate. 
The pseudo-time derivative was discretized as 

where the superscript k denotes iterations and Atk could be increased as the solution approaches 
convergence. In the calculations reported here Atk was kept fixed. Note that once convergence is 
achieved, wk+ = wk. 
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In both the streamfunction-vorticity and primitive variable finite difference formulations used 
in this paper, an iterative line Gauss-Seidel technique was used to solve for each dependent 
variable. A more efficient block technique could have also been used in conjunction with the 
Newton-Raphson method to determine simultaneously the values of all dependent variables. 
Such a block method, however, was not used in the calculations presented in the next section. 

Owing to the non-linear coupling between equations, underrelaxation was used in both the 
streamfunction-vorticity and primitive-variable finite difference formulations. 

PRESENTATION OF RESULTS 

Figures 4 2 4  show the axial velocity profiles and the electric potential profiles at different axial 
locations along the channel, the wall and centreline pressures along the channel, and the wall 
electric potential for different Reynolds numbers, interaction parameters, electrode lengths and 
wall conductivities. For the sake of convenience we will first discuss the results corresponding to 
the reference calculation defined as that corresponding to Re = 500, N = 5, 4, = 1.5, 5 = 0 and 
Le=5 (Figures 4 7 ) .  The results presented in Figures 8-24 will be compared in the following 
subsections with those of the reference case in order to determine the effects of Re, N ,  4e, 5 and L, 
on both the hydrodynamic and electric fields. 

Reference calculations 

Figures 4-7 show the profiles of axial velocity, electric potential, wall electric potential and 
pressure at the channel wall and at the channel centreline as a function of the axial distance along 
the channel. In these figures as well as those of other sections, the solid, dashed and chain lines 
correspond to the calculations performed with the finite element, the primitive-variable finite 
difference and the streamfunction-vorticity finite difference methods respectively. 

The profiles shown in Figure 4 indicate that the axial velocity is distorted by the applied electric 
and magnetic fields before the fluid reaches the electrode entrance located at x = - 2.50. Far 
upstream and far downstream (x = 60) the axial velocity profile is parabolic and becomes almost 
flat at x = - 2.94. 

At the electrode entrance (x = - 2-50) the axial velocity profile exhibits two peaks: one located 
near the channel wall and the other located near the channel centreline. At mid-electrode, only the 
axial velocity peak near the channel wall can be observed. The magnitude of this axial velocity 
peak increases as the fluid moves along the channel and is very pronounced at x = 4.74. Note that 
the axial velocity at the channel centreline, which has a value equal to 1.5 far upstream and far 
downstream from the electrodes, decreases along the channel as a result of the applied electric and 
magnetic fields. This decrease causes the axial velocity profiles to exhibit M-shapes in the electrode 
region. 

Figure 4 also indicates that the electromagnetic body forces decrease downstream of the 
electrode and that the axial velocity profiles relax from their M-shapes at x=4.74 to their 
parabolic shapes at x = 60. The results shown in Figure 4 indicate that the primitive-variable finite 
difference formulation predicts steeper axial velocity profiles at the channel wall and lower axial 
velocities at the channel centreline than the streamfunction-vorticity finite difference method and 
the finite element formulation. At x = 60 the results presented in Figure 4 indicate that the finite 
difference and finite element methods yield identical axial velocity profiles. 

Figure 5 shows the electric potential at selected axial locations along the channel and indicates 
that the electric potential is an almost linear function of the transverse co-ordinate y at a given 
axial location. Figure 5 also shows that there are very few differences between the results of the 
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Figure. 4. Axial velocity profiles along the channel (Re = 500, N = 5, +e = 1.5, Cr=O and L, = 5) 

finite difference and finite element methods. Note that the derivative of the electric potential with 
respect to y at the channel wall is zero for 1x1 > 2-50, whereas the electric potential at the wall is 
equal to 1.5 for 1x1 < 2.50, i.e. in the electrode region. 

Figure 6 shows the wall electric potential as a function of the axial distance along the channel. 
This figure indicates that the electric potential decreases quite rapidly away from the electrode 
edges and that the finite element method predicts slightly higher electric potential at the wall than 
the streamfunction-vorticity and primitive-variable finite difference formulations. 

Figure 7 illustrates the fluid pressure at the channel centreline (C)  and at the channel wall (W) as 
a function of x. The symbols I and 0 in Figure 7 denote the electrode entrance and exit 
respectively. Note that p ( -  co, y ) = O  and therefore A p = p ( x ,  y ) - p ( -  00, y ) = p ( x ,  y). 

In a channel flow without electromagnetic body forces, the pressure decreases linearly with the 
axial co-ordinate x along the channel. The results shown in Figure 7 indicate that, in the presence 
of electromagnetic body forces, the pressure at the wall and at  the centreline increases along the 
channel and between the entrance and exit of the electrode. This pressure increase is caused by the 
Lorentz force and exhibits ‘pinch’ effects at the electrode entrance and exit, where the wall pressure 
is lower and higher respectively than the centreline pressure. 

The results shown in Figure 7 indicate that the finite element method predicts slightly higher 
pressures at the channel wall and at the channel centreline than the finite difference formulations. 
The finite element method also predicts more pronounced ‘pinch‘ effects at the electrode entrance 
and exit than the finite difference techniques, and the streamfunction-vorticity formulation 
predicts higher and lower pressures than the finite element method and the primitive-variable 
finite difference technique upstream and downstream of the electrodes respectively. The pressure 
overprediction and pressure underprediction seem to be due to the calculation of the pressure. In 
both the finite element method and the primitive-variable finite difference technique the pressure is 
directly calculated, whereas in the streamfunction-vorticity finite difference formulation the 
pressure is evaluated once the velocity components are calculated. The velocity components in the 
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Figure 5. Electric potential profiles along the channel (Re = 500, N = 5, 9, = 1.5, 6 = 0 and L, = 5) 

I 1 
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Figure 6. Wall electric potential (Re  = 500, N = 5, de = 1.5, 5 = 0 and L, = 5) 

streamfunction-vorticity formulation are obtained from the differentiation of the streamfunction 
(this differentiation introduces computational noise because the streamfunction is only evaluated 
at the grid points), and the pressure is obtained from the integration of the Navier-Stokes 
equations (integration is a smoothing operation which eliminates some of the computational noise 
introduced by the differentiation of the streamfunction). 
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Figure 7. Pressure at the channel wall and at the channel centreline (Re=500, N = 5 ,  +e = 1.5, Cr=O and L, =5) 

Reynolds number effects 

Figures 8-1 1 show the profiles of axial velocity, wall electric potential, electric potential and 
pressure at selected axial locations along the channel. The results presented in Figures 8-1 1 
correspond to R e =  1000, N = 5 ,  + e =  1.5, O=O and L,=5; therefore the difference between the 
results presented in Figures 4 7  and 8-11 is the Reynolds number, and a comparison between 
these two sets of figures permits one to assess the effects of the Reynolds number on the 
hydrodynamic and electric fields. 

A comparison between Figures 4 and 8 indicates that the characteristics of the flow field at 
Re = lo00 are similar to those corresponding to Re = 500, i.e. the parabolic velocity profile is 
distorted into M-shaped profiles as the fluid moves along the channel. Such a comparison also 
reveals that the axial velocity distortion increases as the Reynolds number is increased. In 
particular, the M-shaped velocity profiles are more pronounced at x=O, 25, 4.74 and 60 at 
Re= lo00 than at Re= 500. Furthermore, Figures 4 and 8 also indicate that the axial velocity 
profiles at x = - 2.94 and - 2.50 are almost the same at Re = 500 and 1OOO; however, the axial 
velocity profile at x = 60 for Re = 500 is parabolic whereas it still exhibits an M-shape at the same 
location at Re = 1000. The longer persistence of the M-shaped profiles as the Reynolds number is 
increased is a direct consequence of the lesser importance of viscous effects as the Reynolds 
number is increased. 

Figures 4 and 8 also show that the differences between the finite element and finite difference 
formulations increase as the Reynolds number is increased, and indicate that the primitive- 
variable finite difference formulation predicts steeper axial velocity gradients at the channel wall 
and more pronounced axial velocity peaks than the finite element and streamfunction-vorticity 
formulations. Note that the axial velocity at the centreline decreases as the Reynolds number is 
increased in the electrode region. 
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Figure 8. Axial velocity profiles along the channel (Re=  1O00, N = 5 ,  4e = 1.5, C=O and L, =5)  

The electric potential profiles shown in Figures 5 and 9 are almost independent of the Reynolds 
number for-the calculations performed with the finite element method; however, the primitive- 
variable and streamfunction-vorticity formulations predict smaller and higher electric potentials 
respectively than the finite element method at Re = 1O00, whereas they predict higher electric 
potentials at Re=500. The wall electric potentials are almost the same for Re=500 and lo00 
(Figures 6 and lo), and the finite element method predicts higher wall potential than the 
streamfunction-vorticity and primitive-variable formulations. 

The pressure increase shown in Figure 1 1  is smaller than that of Figure 7 owing to the higher 
Reynolds number and the lesser importance of viscosity as the Reynolds number is increased. 

Figure 1 1  clearly indicates that the pressure along the channel centreline is smaller than that 
along the channel wall for 1x1 < 2.50. At the electrode entrance and exit, both Figures 7 and 11 
show electromagnetic pinch effects whose magnitude is almost independent of the Reynolds 
number. 

A noticeable difference between the results of Figures 7 and 1 1  is that the primitive-variable 
finite difference formulation predicts higher and lower pressure values than the finite element 
formulation upstream and downstream of the electrode edges respectively. The finite element 
method, however, predicts higher pinch effects than the finite difference techniques. 

Interaction parameter effects 

Figures 12-15 show the profiles of axial velocity, electric potential, wall electric potential and 
pressure at selected locations along the channel. These figures correspond to Re = 1O00, N = 10, 
$e = 1 .5 ,Z  = 0 and L, = 5 and will be compared with Figures 8-1 1 in order to determine the effects 
of the interaction parameter on the hydrodynamic and electric fields. 

Figures 8 and 12 indicate that the distortion of the axial velocity profiles increases as the 
interaction parameter is increased; in particular, Figure 12 indicates that the axial velocity exhibits 
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an M-shaped profile at x = - 2.50, and this M-shape becomes more pronounced as the fluid moves 
along the electrode region (compare Figures 8 and 12 at x = 2.50 and 474). Both Figures 8 and 12 
also indicate that the axial velocity relaxation distance downstream of the electrode increases as 
the interaction parameter is increased, i.e. the distance required for the velocity profile to reach a 
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Figure 11 .  Pressure at the channel wall and at the channel centreline (Re=  1O00, N = 5 ,  q5e = 1.5, (T=O and L, =5) 

= 5) 

parabolic shape downstream from the electrode increases as the interaction parameter is 
increased. 

Figures 8 and 12 also indicate that the effects of the applied electric and magnetic fields increase 
upstream as the interaction parameter is increased. They also indicate that the differences between 
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the finite difference and finite element methods increase as N is increased. In particular, the axial 
velocity profiles predicted by the primitive-variable finite difference method feel the effects of the 
applied electromagnetic field farther upstream and farther downstream than the finite element and 
streamfunction-vorticity formulations. 

The axial velocity profiles predicted by the streamfunction-vorticity formulation relax at a 
faster rate than those of the finite element method and primitive-variable formulations, as 
indicated in Figure 12 at x=60. 

Figures 9 and 13 indicate that the electric potential across the channel decreases as the 
interaction parameter is increased and that the streamfunction-vorticity formulation predicts a 
higher electric potential than the finite element and primitive-variable formulations; however, the 
finite element method predicts a higher electric potential at the channel wall than the finite 
difference techniques (Figure 14). 

Figures 10 and 14 indicate that the wall electric potential downstream of the electrodes is almost 
independent of the interaction parameter; however, upstream of the electrodes, the 
streamfunction-vorticity and primitive-variable formulations predict higher electric potentials at 
the wall than the finite element method for N = 5 than for N = 10, whereas the results of the finite 
element method are almost independent of the interaction parameter. 

Figures 11 and 15 indicate that the electromagnetic pinch effects at the electrode entrance and 
exit, the pressure increases along the electrode and the differences between the pressure at the 
channel wall and at the channel centreline increase as the interaction parameter is increased. 
Figures 11 and 15 also show that the finite element method predicts higher pressures at the 
channel wall and at the channel centreline and higher electromagnetic pinch effects between the 
electrodes than the primitive-variable and streamfunction-vorticity finite difference formulations; 
however, upstream and downstream of the electrodes the streamfunction-vorticity formulation 
predicts higher and lower Ap respectively than the primitive-variable and finite element methods. 

Figure 13. Electric potential profiles along the channel (Re= lO00, N =  10, & = 1.5, E=O and L, = 5)  
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Figure 14. Wall electric potential (Re= 1O00, N =  10, 4e = 1.5, 5=0 and L, =5)  

Figure 15. Pressure at the channel wall and at the channel centreline (Re=  1O00, N =  10, 4e = 1.5, Cr=O and L, =5) 

Wall conductivity eflects 

Figures 16-19 show the profiles of axial velocity, electric potential, wall electric potential and 
pressure at the channel wall and at the channel centreline, at selected axial locations along the 
channel. These figures correspond to Re = 1000, N = 10, 4, = 1.5, 8 = 0.3 and L, = 5 and will be 
compared with Figures 12-15 in order to assess the effects of the wall conductivity on the 
hydrodynamic and electric fields. 
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Figure 16. Axial velocity profiles along the channel (Re= lO00, N =  10, = 1.5, 6=0,3 and L, =5) 

Figure 17. Electric potential profiles along the channel ( R e =  1o00, N =  10, de = 1.5, 0 =0.3 and L, = 5) 

Figures 12 and 16 indicate that the effect of increasing the wall conductivity is to slightly 
decrease the peak of the M-shaped axial velocity profiles (compare Figures 12 and 16 at x =0,2.5, 
4.74 and 60). The finite difference and finite element methods used in this paper predict almost the 
same decrease in the axial velocity profiles as 0 is increased from 0 to 0.3. However, the magnitude 
of the electric potential at a given axial location increases as 0 is increased, and the 
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streamfunction-vorticity formulation predicts a higher electric potential than the finite element 
and primitive-variable methods (compare Figures 13 and 17). 

Figure 18 shows that the wall electric potential increases as Cr is increased upstream and 
downstream of the electrodes. Figure 18 also shows that, for 5 =0.3, the streamfunction-vorticity 
technique predicts a higher wall electric potential than the finite element and primitive-variable 
methods, whereas the finite element formulation predicts a higher wall potential than the 
streamfunction-vorticity and primitive-variable methods for 5 = 0. 

The differences between the results shown in Figures 12-15 and 16-19 are entirely due to the 
boundary conditions at the channel walls, which are electrical conductors and insulators for 
0=03 and 0 respectively. 

Figures 15 and 19 indicate that the pressure increase at the channel centreline and at the channel 
wall, and the electromagnetic pinch effect at the electrode entrance and exit, decrease as the wall 
conductivity is increased. Furthermore, the pinch effect is smoother for Cr =0.3 than for Cr=O. 

Figures 15 and 19 also indicate that the values of Ap predicted by the finite difference and finite 
element methods downstream of the electrode are almost independent of the wall conductivity, 
whereas the values of Ap upstream of the electrode decrease as the wall conductivity is increased. 
The finite element method predicts lower and higher values of Ap upstream and downstream of the 
electrodes respectively than the primitive-variable and streamfunction-vorticity formulations. 

Electrode length effects 

Figures 2&24 show the profiles of axial velocity, pressure at the channel wall and at the channel 
centreline, electric potential and wall electric potential as a function of the axial co-ordinate along 
the channel. These figures correspond to Re = 1000, N = 10, 4, = 1.5, L, = 1,s = 0 and 0 = 0.3 and 
will be compared with Figures 12-15 to assess the effects of the electrode length; they will also be 
compared amongst themselves to determine the effects of the wall conductivity on the hydrodyn- 
amic and electric fields for L,  = 1. 

-6 - 4  - 2  0 2 4 X 6  

Figure 18. Wall electric potential (Re = 1O00, N = 10, 4, = 1.5, C = 0 . 3  and L, = 5) 
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Figure 19. Pressure at  the channel wall and at  the channel centreline (Re= lo00, N =  10, 4e = 1.5, 0=0.3 and L, =5) 

Figure 20. Axial velocity profiles along the channel (Re= 1O00, N = 10, de = 1.5, 5 = O  and t, = 1) 

Figures 12 and 20 clearly indicate that the upstream and downstream distortion of the axial 
velocity profiles increases as the electrode length is increased. For example, the axial velocity 
profiles at x= -2.14 for L, = 1 exhibit an almost parabolic shape (Figure 20) whereas those 
corresponding to L, = 5 and x = - 2.94 are flattened by the applied electromagnetic field (Figure 
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12). The M-shaped axial velocity profiles are more pronounced and the axial velocity peak is 
larger and closer to the channel wall for L, = 1 than for L, = 5 at x = 0. 

Figure 21 shows the pressure at the channel wall and at the channel centreline, and clearly 
illustrates the electromagnetic pinch effect at the electrode entrance and exit. The values of Ap at 
the channel centreline and at the channel wall are the same at x = 0, i.e. at mid-electrode. The finite 
element method predicts a larger Ap for x > 0 than the primitive-variable and 
streamfunction-vorticity formulations, and the results of the primitive-variable finite difference 
scheme indicate that the values of Ap at the channel wall and at the channel centreline become 
equal at larger distances downstream and upstream of the electrodes than those of the 
streamfunction-vorticity and finite element formulations. 

A comparison between Figures 15 and 21 shows that the magnitude of the electromagnetic 
pinch effect increases as the electrode length decreases, Ap increases as the electrode length is 
increased, and the finite element method predicts a higher Ap at x = 0 than the finite difference 
formulations. 

Figure 22 shows the values of Ap for an electrode length L, = 1 and 0 =0-3. A comparison 
between Figures 21 and 22 indicates that the electromagnetic pinch effect and the values of Ap 
decrease as the wall conductivity is increased. Figures 21 and 22 also show that the values of Ap 
corresponding to 5 = 0.3 upstream of the electrodes are smaller than those corresponding to 5 =0, 
in agreement with the results presented in Figures 12-17. The differences between Figures 21 and 
22 upstream of the electrodes are entirely due to the wall conductivity. 

Figure 23 shows the electric potential profiles along the channel wall for 0 =0.3. The electric 
potential corresponding to 5 = 0 is almost indistinguishable from those corresponding to 0 = 0.3 
and is not shown in Figure 23. 

Figure 23 indicates that the electric potential is an almost linear function of the y-co-ordinate, 
with a concavity towards the channel axis caused by the hydrodynamic field. Figure 23 also 
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Figure 21. Pressure at the channel wall and at the channel centreline (Re= 1O00, N =  10, 4e = 1.5, *=o and L, = 1) 
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Figure 22. Pressure at the channel wall and at the channel centreline (Re= 1O00, N = 10, 4e = 1.5, 6=0.3 and L, = 1)  

Figure 23. Electric potential profiles along the channel (Re=  1O00, N = 10, 4e = 1.5, 6=0.3 and L, = 1) 

indicates that the electric potential at the wall rapidly decreases upstream and downstream of the 
electrode edges as shown in Figure 24. 

Figure 24 shows the wall electric potential for an electrode of length L, = 1 and 5 =O and 0.3, 
and indicates that downstream of the electrodes the finite element method predicts a higher 
electric potential than the streamfunction-vorticity and primitive-variable formulations for both. 
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Figure 24. Wall electric potential (Re=1000, N =  10, # ,=1 .5 ,  @ = O ,  (r=0,3 and L,=1)  

0 = 0 and 0.3. Upstream of the electrodes the streamfunction-vorticity formulation predicts a 
higher electric potential at the wall than the finite element and primitive-variable methods for 
0 = 0 3 ,  whereas for 0 = O  the electric potential at the wall predicted hy the finite element method is 
higher than those predicted by the finite difference techniques. Both upstream and downstream of 
the electrodes the electric potential at the wall is higher for 0 = 0.3 than for 0 = 0. These results are 
in agreement with those of Figures 12-19. 

CONCLUSIONS 

A Galerkin finite element method and two finite difference techniques have been used to analyse 
magnetohydrodynamic channel flows as a function of the Reynolds number, interaction para- 
meter, wall conductivity and electrode length. The finite element method uses a primitive-variable 
formulation, bilinear interpolation for the pressure field and biquadratic interpolation functions 
for the velocity field and electric potential in the fluid and wall. The finite difference techniques use 
primitive variables and a streamfunction-vorticity formulation, and upwind/central differences 
for the convective terms. 

The results of the calculations indicate that the applied electromagnetic field distorts the axial 
velocity profiles into M-shapes upstream and downstream of the electrodes. The distortion 
increases as the Reynolds number, interaction parameter and electrode length are increased, and 
decreases as the wall conductivity is increased. The results also show that the upstream influence of 
the applied electromagnetic field is nearly independent of the Reynolds number and that the 
relaxation distance of the axial velocity profiles from their M-shape in the electrode region to a 
parabola far away from the electrode increases as the Reynolds number is increased, owing to the 
lesser importance of viscous effects as that number is increased. 

The axial velocity at the channel centreline decreases as the fluid moves along the electrode 
region and, at sufficiently high interaction parameters, recirculation zones may be created near the 
centreline and axial velocity spikes (jets) may occur near the channel wall, in qualitative agreement 
with the results of asymptotic analyses. 
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The MHD channel flow analysed in this paper differs from previous numerical studies in that 
the applied magnetic field is perpendicular to the flow direction. Furthermore, the analysis 
presented in this paper is valid for laminar flows at relatively low interaction parameters (0 (l)), 
and both the convective and viscous terms have been retained in the governing equations. 

The profiles of the electric potential across the channel are almost linear and show a concavity 
towards the channel centreline. Such a concavity is due to the hydrodynamic field. 

The finite element results indicate that the electric potential profiles are almost independent of 
the Reynolds number. The primitive-variable and streamfunction-vorticity formulations predict 
smaller and higher electric potentials respectively than the finite element method at a Reynolds 
number of 1000, whereas they predict higher electric potentials at a Reynolds number of 500. 

The wall electric potential decreases quite rapidly away from the electrode edges for both 
insulating and conducting walls, and the finite element method predicts slightly higher wall 
potentials than the streamfunction-vorticity and primitive-variable techniques. 

The finite difference and finite element calculations indicate that the pressure rises along the 
electrode region and that there are electromagnetic pinch effects a t  the electrode entrance and exit. 
The finite element method predicts more pronounced pinch effects than the finite difference 
techniques. The magnitude of the pinch effect decreases as the wall conductivity is increased and 
increases as the electrode length is decreased. 

The primitive-variable finite difference method predicts steeper axial velocity gradients at the 
channel wall and lower velocities at the centreline than the streamfunction-vorticity finite 
difference technique and the finite element formulation. These differences seem to be due to the 
different grids used in the calculations and the method used to evaluate the pressure. In the finite 
element method and in the primitive-variable finite difference method the pressure at the nodal 
points and a Poisson equation for the pressure respectively are solved, whereas in the 
streamfunction-vorticity formulation the velocity field is first obtained by differentiation of the 
streamfunction and then the pressure field is calculated by integration of the Navier-Stokes 
equations. The differentiation of the streamfunction introduces computational noise, since the 
streamfunction is only evaluated at the (discrete) grid points. This computational noise is 
smoothed out when the pressure field is calculated by integrating the linear momentum equations. 

The results of the calculations also indicate that the pressure and the electromagnetic pump 
power increase as the Reynolds number, interaction parameter and electrode length are increased. 
However, the distance required for the flow to reach a fully developed, laminar profile downstream 
of the electrode increases as the aforementioned parameters are increased. For a Reynolds number 
of 1O00, an interaction parameter equal to 10 and an electrode length equal to five times the 
channel half-width, the flow is fully developed at a distance of about 200 channel widths 
downstream of the electrode. 

The differences between the results of the finite difference and finite element methods increase as 
the Reynolds number and interaction parameter are increased. 
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